536 research outputs found

    A Continuously Growing Dataset of Sentential Paraphrases

    Full text link
    A major challenge in paraphrase research is the lack of parallel corpora. In this paper, we present a new method to collect large-scale sentential paraphrases from Twitter by linking tweets through shared URLs. The main advantage of our method is its simplicity, as it gets rid of the classifier or human in the loop needed to select data before annotation and subsequent application of paraphrase identification algorithms in the previous work. We present the largest human-labeled paraphrase corpus to date of 51,524 sentence pairs and the first cross-domain benchmarking for automatic paraphrase identification. In addition, we show that more than 30,000 new sentential paraphrases can be easily and continuously captured every month at ~70% precision, and demonstrate their utility for downstream NLP tasks through phrasal paraphrase extraction. We make our code and data freely available.Comment: 11 pages, accepted to EMNLP 201

    Embedding Compression with Isotropic Iterative Quantization

    Full text link
    Continuous representation of words is a standard component in deep learning-based NLP models. However, representing a large vocabulary requires significant memory, which can cause problems, particularly on resource-constrained platforms. Therefore, in this paper we propose an isotropic iterative quantization (IIQ) approach for compressing embedding vectors into binary ones, leveraging the iterative quantization technique well established for image retrieval, while satisfying the desired isotropic property of PMI based models. Experiments with pre-trained embeddings (i.e., GloVe and HDC) demonstrate a more than thirty-fold compression ratio with comparable and sometimes even improved performance over the original real-valued embedding vectors

    Chemometrics-assisted identification of anti-inflammatory compounds from the green alga klebsormidium flaccidum var. Zivo

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). The green alga Klebsormidium flaccidum var. zivo is a rich source of proteins, polyphenols, and bioactive small-molecule compounds. An approach involving chromatographic fractionation, anti-inflammatory activity testing, ultrahigh performance liquid chromatography-mass spectrometry profiling, chemometric analysis, and subsequent MS-oriented isolation was employed to rapidly identify its small-molecule anti-inflammatory compounds including hydroxylated fatty acids, chlorophyll-derived pheophorbides, carotenoids, and glycoglycerolipids. Pheophorbide a, which decreased intracellular nitric oxide production by inhibiting inducible nitric oxide synthase, was the most potent compound identified with an IC50 value of 0.24 µM in lipopolysaccharides-induced macrophages. It also inhibited nuclear factor kappaB activation with an IC50 value of 32.1 µM in phorbol 12-myristate 13-acetate-induced chondrocytes. Compared to conventional bioassay-guided fractionation, this approach is more efficient for rapid identification of multiple chemical classes of bioactive compounds from a complex natural product mixture

    Study of Ammonia Concentration Characteristics and Optimization in Broiler Chamber during Winter Based on Computational Fluid Dynamics

    Get PDF
    Poultry breeding is one of the most significant components of agriculture and an essential link of material exchange between humans and nature. Moreover, poultry breeding technology has a considerable impact on the life quality of human beings, and could even influence the survival of human beings. As one of the most popular poultry, broiler has a good economic benefit due to its excellent taste and fast growing cycle. This paper aims to improve the efficiency of raising broilers by understanding the impact of ammonia concentration distribution within a smart broiler breeding chamber, and the rationality of the system’s design. More specifically, we used computational fluid dynamics (CFD) technology to simulate the process of ammonia production and identify the characteristics of ammonia concentration. Based on the simulation results, the structure of the broiler chamber was reformed, and the ammonia uniformity was significantly improved after the structural modification of the broiler chamber and the ammonia concentration in the chamber had remained extremely low. In general, this study provides a reference for structural optimization of the design of broiler chambers and the environmental regulation of ammonia
    • …
    corecore